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BODY IN A LIQUID* 

RUBANOVSKII 

General integrable cases of the Kirchhoff-Clebsch equations /l, 2/, with 
a fourth quadratic interval not explicitly dependent on time, areconsidered. 

A proof is presented of Steklov's theorem /3/ that the four cases pointed 

out by Clebsch /2/, Steklov /3/ and Lyapunov /4/ are the only ones for 
which the equations of inertial motion of a body in a liquid admit of a 

fourth quadratic integral. An analysis is presented of Lyapunov's statement 

/4/ that his integrable case may be considered as a limiting case of 

Steklov's, and Clebsch's third case as a limiting case of his second. It 

is shown that the fourth integral of the Kirchhoff-Clebsch equations pointed 

out by Kolosov /6/ does not lead to integrable cases other than those of 

Steklov and Lyapunov. 
In recent years, reports have been published concerning the "discovery" 

of new integrable cases of the equations of motion of a charged body in 

a magnetic field, which are isomorphic to the Kirchhoff-Clebsch equations; 

this runs counter to Steklov's theorem. This prompted the author to 
undertake an analysis of Steklov's original account /3/, which entirely 

vindicates the latter's theorem. 

1. We consider the problem of the inertial motion of a free body bounded by a simply- 
connected surface, in a homogeneous, incompressible, ideal liquid, unbounded in all directions, 

which is in irrotational motion and stationary at infinity. 
The kinetic energy of the "body-plus-liquid" system is /2/ 

*Prikl.Matem.Mekhan.,52,3,402-414,1988 
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(1.1) 

where alJr biJ, ciJ are constants specific to the given system, 11 and y, and the projections 

on the axes of the second central Cartesian coordinate frame /3/ 0x,x,x, rigidly attached to 

the body, in which ct,=O (i#j)* x is the vector of momenta of the system (an impulsive force) 

and y its vector of angular momenta about the central point 0 (an impulsive couple). Through- 

out this paper repeated indices i,j indicate summation from 1 to 3. 

The motion of the body in the liquid is described by the following equations /l-3/: 

(1.2) 

Three first integrals of these equations are known /l/: 

x.x = const, "'y = const, T = const (1.3) 

Since the theory of the last Jacobi multiplier is applicable to Eqs.(l.l), it is particu- 

larly important to determine an additional, fourth integral, which is not explicitly time- 

dependent and contains an arbitrary constant. 

Five cases, originally discovered by Clebsch /2/, Steklov /3/ and Lyapunov /a/, are known 

in which Eqs.(l.Z) admit of a fourth integral V = const. In all cases &J = bi, = ctj = 0 (i # j). 
In one of them the integral V is linear, V = I/~ = Cons& if a,, = sea, b,, = b,,, ~11 = caa 
(Clebsch's first case). In all the others the fourth integral is quadratic, of the form 

V = r/r (-4iiXi’ + ZBliXfL/* + CiiV*“) (1.4) 

In Clebsch's second case (7 arbitrary): 

all = a -I- ~33~33 (I 2 3), b,, = b,, = b,, = b (1.5) 
A,, = zcll (12 3), B,, = B,, = B,, = 0, Cl1 = CS2 = CSs = 

-1 

In Clebsch's third case: 

b,, = has = b,, = b, cl1 = ~22 = c33 = C 

Al, = a23aas1 cl, = -~a,, (1 2 3), B,, = B,, = Bss = 0 

(1.6) 

In Steklov's case (a arbitrary): 

bll = b + uc22c33, all = a + u*c11 (%a - c,,Y (1 2 3) 
A,, = u2 (cz2 - c33)2, B,, = -ucI1 (1 2 3), Cl1 = Cz2 = 

c,, = 1 

Finally, in Lyapunov's case: 

Clebsch's second and third cases may be characterized by a single condition /2/: 

imposed on the 
ditions /4/: 

_=_=nll a21- (133 a39 - 011 
Cl1 Ql c3a 

(1.9) 

coefficients of the form (l.l), and Steklov's and Lyapunov's cases by two con- 

(1.7) 

(1.8) a,, = a + (b,, - b,# cm1 (1 2 3), cl1 = cz2 = egg = c 

An = bn (bee + bss)“, B,, = cb,, (b,, + bss), Cl, = 
cab,, (1 2 3) 

bm - bss bz, - bll bn - bzt -=-=- 
Cl1 %? 

(1.10)1 
Q.9 

a,, _ (bzz - bd* = a22 _ (ha - h,Y 
Cl1 c22 

= a33 _ (h - W 
css 

Steklov /2/ posed the problem of finding all cases in which Eqs.(l.2) admit of a fourth 

general integral which is an entire homogeneous function.of the variables xj, yl of degree n. 
He solved the problem for n = 1 and n =2. For n = 1 the only possibility is Clebsch's first 
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case. Here the body has the property that its shape is invariant under rotation throlig!, 190" 

about the x3 axis. In particular, if b,, I= brz = b,, = 0 this case degenerates into ti1,1t 

considered by Kirchhoff /l/, corresponding to d solid of revolution. 
For n = 2 Steklov showed i/3/, Chap. IV, p.107, and correction to chap. Iv, pp. i)(-xi 

that there are no cases other than (!.5)-(1.8). k&2 shall refer to this assertionassteklov':: 

Theorem. 

2. We now present an extended proof of Steklov's Theorem. Let us assume that the fourth 

quadratic homogeneous integral V of equations (1.2) has the structure of (l.l), with T re- 

placed by V and eij, bijy Cij by Aij, Bij, Cij, where Aij =A ii, Cij = C,;, Exprkss T and v as 

7' = 7',.. + T,, +- Tail, v = VX',, -i v,, + v,, 

where the first, second and third terms on the right denote the parts of T and Cr depending, 

respectively, only on Xi, only on yi and on both xi. yi (i = 1, 2,-3). 
Let us evaluate the derivative with respect to time v'= W of V along trajectories of 

(1.2), expressing it as 

w = WXXX + w,,, + w*,, -t wu,, 

where the terms on the right denote the parts of W in which the variables xi, Yi occur in the 

respective combinations ti3yX, zrxlys, .zi~,yk, yiyiy,, (i, i,k=1,2,3). The requirement that W 

vanish identically as a function of Xl,!?/l implies the following four identities: 

Since the functions T and V appear symmetrically in (2.1)-(2.4), we have the following 

Lemma. If Eqs.il.2) admit of a quadratic homogeneous first integral V = con&, not 

explicitly dependent on time, then Eqs.(1.2! with T replaced by V admits of the integral 

T = con& 
Hence it follows that if one knows some general integrable case of Eq.(1.2) witha fourth 

quadratic homogeneous integral V, then one can immediately indicate another general integrable 
case, by simply interchanging the roles of T and V. In this sense the general integrable 

cases of Eqs.(1.2) with fourth quadratic homogeneous integral pair off. Examples of such 

pairs are Clebsch's second and third cases, Steklov's and Lyapunov's Cases. For each such 

pair of integrable cases, the sets of four first integrals necessary to reduce the problem to 

quadratures consist of the same integrals. Hence, given such a pair of general solutions of 

Eqs.il.21, the motions of the representative points in +i, yi space take place on the same two- 

dimensional integral manifold, but the COrreSpOnding motions of the representative points 

defined by Eqs.(1.2) with the same initial Conditions are different. 
Consider the identity (2.4). Xt may be reduced to the relationships 

Eqs.(2.6) can be replaced by a single equation: 

Indeed, adding the relationships in (2.61, we obtain (c~~-c~&~==~ (123); squaring this 

relationship, as well as (2.6), and summing term by term, we obtain (2.7). 

From (2.5) with A,+0 we obtain 

c,, = c + 'C,& (1 2 3) (2.8) 

where C, T are undefined constants. 
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Let us analyse Eqs.(2.5) and (2.7). 

Let A,#O. Then it follows from (2.7) that C;i=O(i+j). Using (2.8), we obtain 

VYr = 'l&Ye + 7Tyy (YS = YP + Y,* + YZ) (2.9) 

This implies that we must analyse the following cases: 

a) C#O, r= 0; b) C=O,r#O(z=l); 

c) c=z=o; d) C+O,~#O(z=1). 

In cases (b) and (d) we may assume that ~=i - this is ensured by replacing the constants 

cii by c[~T-' (i = 1, 2, 3). Using (2.9) for these four cases, we obtain: 

a) V = llnCy*; b) VY, = T,,; c) V,, = 0; 
d) V = 'laCya + T,,. 

Analysis of case (b) reduces tothatof case (c). Indeed, since T is an integral of Eqs. 

(1.2), the determination of the required integral V may be reduced to that of an integral 

U = V - T = lJxI, + L’,, for which Cm,= 0. Similar reasoning reduces the analysis of case (d) to 

that of case (a). 

We arrive at the following conclusion. 

When AC # 0 there are two distinct cases: 

Case 1. V,, = ‘l,Cya, C# 0, A, + 0. 

case 2. v,, = 0. 
NOW let A,=O. Then we must consider 

case 3. T,, = r/*cy*, c # 0 (c = Cl1 = c,, = $3). 

Next, identity (2.4) is certainly valid when T,, = 0. This leads to the following case, 

which Steklov /3/ did not consider (since it is physically impossible in the context of a body 

moving in a liquid and is therefore of purely mathematical interest): 

Case 4. Tuy = 0. 
We shall analyse each case separately. 

3. Case 1. Consider identity (2.3). It splits into three 

ix (cm - 4 &,Y,Y, + %Ya q$ --cssY, 2 
(12 3) 

c(y,$$-y 5) = 0x3 
=o (123) 

and substitution of the expressions 

N 
e=B,iytt 

aT 
+=+,,yi (123) 

leads to the relationships 

identities, as follows: 

t 

(czz - CAB,, + c&, - c,,B,, + c (b,, - b,,) = 0 (12 3) 

(~3 - GAB,, + c.wB,, - Cb,, = 0 (12 3) 

(cx - c&B,, - casB,, + Cb,, = 0 (1 2 3) 

c,IB,, = Cb,,, ceB,, = Cb,, (12 3) 

(3.1) 

13.2) 

(3.3) 

Substituting Cb,, and Cb,, from (3.3) into (3.2), we obtain the equations 

(~11 - c&P,, + B,,) = 0, (~3 - MB,, + B,,) = 0 (123) 

which yield 

Hence it follows that 

& + B,, = 0 (12 3) (3.4) 

Now subtract the first equality in (3.3) from the second; using (3.4), we then obtain the 

equations 

(~11 + ~a.#$, = 0 (12 3) 

which, on the assumption that 

De = (~11 + c&(c2a + G~)(CM +'c,,) # 0 (3.5) 

imply B,, = BaJ = B,, =O, and in view of (3.4) and (3.2) we also find that 



f&l I== 1~‘~~ = B,, ~~- 0, b,, = b,, = 0 (1 23) 

As a result, we have 

B,, : B,, == 0, LJ,, = b,, : 0 (1 23) 

V,,, :r: Biiziyi, T,, = biisiyi 

Next, adding Eys.(3.1) together, we obtain 

(3.6) 

,*,x, cc,, - (.A -4, = 0 

whence it follows that 

B,, = B + pcrr (I 23) (3.7) 

where B, p are undefined constants. 
In view of (3.7), we can write Eqs.(3.1) as 

PGI (~2 - ~3) = C (b,, - b,,) (12 3) (3.8) 

Multiplying these equations by b,,, b,,, b,, r respectively, and adding, we obtain 

pK=(l, K= 2 b,,c,,(c,,-cc,,) (3.9) 
(123) 

Consequently, either a) K = 0, or b) p = 0. 

Each of these cases must be considered separately. 

a) Let p+ 0, so K = 0. 
Since K = 0, 

b,, = b + 0~22~33 (12 3) (3.10) 

where b, TV are undefined constants. Substituting the constants from (3.10) into Eqs.(3.8), 
we transform the latter into 

(P + e%,(c,, - c33) = 0 (12 3) 
Hence, as &fO, we obtain 

p=-UC, IsfO 

Now consider identity (2.2). It splits into three identities, as follows: 

(3.11) 

(8.1%) 

and substitution of the expressions 

2 = Aliri, 
dT 
-..s=alizi (123) 

az1, 

gives the relationships 

c (%s - a& - c,, (A,, - Aza) = L (123) 

%, = @I,, Car, = c&la, Car, = c,,A,, (123) 

Combining Eqs. (3.141, we obtain 

k1--cse)A,, =Ov (CBZ- c&G, = 0, (~33 - c&,, =O (12 3) 

and these in turn yield the relationship (Alz2 +A,82+AS12)AC = 0. Hence 
and from (3.14) we also derive a,, =uPIl= a,, = 0. 

Thus, 

A,, = A,, = A,, = 0, uI2 = uBII = as1 = 0 

V,, = ‘i,A~~z,~, T,, = ‘12uiixi2 

(3.13) 

(3.14) 

A,, = A,, = A,, = 0, 

(3.15) 

Substitutingtheconstants from (3.7) and (3.10) into (3.12) and using (3.11), we express 

L as 

Now add Eqs.(3.13) together; in view of (3.16), this gives 
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whence it follows that 

A,, = A + a2Cc,, (p - 34 (123) (3.17) 

where d, p are undefined constants. 
Substituting the constants from (3.16) and (3.171 into Eqs.(3.18), we transform the 

latter into 

a,2 - a33 - u*c11 (CZB - c33)LJ.l - 3 @*a + c33)l = OS&f (123) (3.18) 

Finally, in view of (3.6) and (3.15), identity (2.1) yields 

Using (3.7), (3.10) and (3.111, we rewrite this relationship as 

CtlT3, ~1 (a33 - a33) + ,lT3, ~22~33 (A,, -. A,,) =O 

Substituting (3.17) and the value of %,-l~ss from (3.18) into this expression, we 
obtain 

- '22) (cl,Is + c22cQS)- 3 Z C&J83 ($a2 - cg$*)- MCii=O 
(123) 

which, in view of the identities 

2 %zc33 (%a - Cd=fif, 
(123) 

z c,,c3,(c333 -. C223)=nlcii 
(123) 

becomes (p - 2cij)M = 0. Hence we find 
I" = 2cii 

Now multiply Eqs.(3.18) by Cm,C,,,C,,, respectively, and add; in view of (3.16), 
gives 

or, via the second identity of (3.201, 

I; all(cz3 
(123) 

- GL) + Da ,rZ$ %%a (Cs3'- %za)=O 

Using the identity 

%G33 = p - c11 (c22 + c33)~ p = CllC33 + C&233 t- C33Cll 

we reduce this equality to the form 

0% (% -CA [a,, - o*c,* (c*22 -I- &*)I= 0 

Hence 

%I = s + O'C,l (C*22 -I- c332) i TCjl (123) 

where a,z are undefined constants. Substitution of the constants (3.22) into Eqs.(3 
transforms the latter into 

(c,, - caa)r = 0 (123) 
Hence z = 0. 
Summarizing, we have the following expressions for the coefficients of the funct 

and V: 

a 11 = a + 0% G-b2 + c333), &I = B 4- =a,c,, (12 3) 
A,, = A + oaCc,, (2c,, + Zc,, - C& I?,, = B - ucc,,, 

C,, = C+O (123) 

tZjj = bij = Cjf = 0, di,=Bt,=Cr,=O (i#f=i,2,3) 

where d,B,C are arbitrary constants and b,o, ~~~~~~~~~~~ are parameters such that 

(3.20) 

(3.21) 

this 

(3.22) 

.18) 

ions T 

the 
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quadratic form (1.1) is positive definite. The integral V has the form 

V = ‘:,Ar..r -1 Bs.y - Cl:, 

where 

is the integral corresponding to Steklov's case /3/. 

b) Nowlet p=O in (3.9). In that case the equalities (3.6) remain valid, while (3.6), 

(3.8) and (3.12) yield 

I),, = B,, = B,, = B, b,, = b,, = b,, = b, L = 0 (3.23) 

Proceeding as before, we find that (3.14) again implies (3.15), while (3.13) with L =O 
gives (1.9); hence 

a 11 = a -I- r&$33 (12 3) (3.24) 

where a,r are undefined constants. Substitution of the constants (3.24) into Eqs.(3.13) 

with L = 0 transforms them into 

Multiplying these 

equality 

whence it follows that 

C-c (~2 - cm) = A 31 - A 22 (1 2 3) (3.25) 

equations by Cl11 C?Zl cz3, respectively, and adding, we obtain the 

z (C,? - c33) A,,=0 
(123) 

A,, = A + ~~11 (12 3) (3.26) 

where A, p are undefined constants. Substituting the constants from (3.25) into Eqs.(3.26), 

we obtain 

(CT + 0% - CA = 0 (12 3) 
and hence p = -cr. 

Finally, substitution of (3.23) into (3.19) yields an identity. 

Summarizing, we have the following expressions for the coefficients of T and V: 

where A, B, C are 

quadratic form (1.1) 

where 

an= a + %2C33r b,, = b (123) 

A,, = A - Crc,,, B,, = B, C,, = C # 0 (12 3) 

aij = bij = cij = 0, Ail = Bij = Ctj = 0 (i, j = 1, 2, 3; i#j) 

arbitrary constants and a, b, T, cll, ~33, ~33 are parameters such that the 
is positive definite. The integral V has the form 

V = ‘1,Ax.x + Bx.y - CVc, 

is the integral corresponding to Clebsch's second case. 
Thus, analysis of Case 1 yields the integrable cases of Steklov and Clebsch (second case). 

ic. Case 2. In this case the identity (2.3) splits into three identities, as follows: 

CZZYZ &Y, + &WY, + B,,Y,) - C33Y3 (&lY, + &,Y, + 

43Y3) + & (c33 - %)Y*Y3 + 4, (Cl1 - C33)Y,Y, + 

43 (c32 - 4Y,Y, = 0 (12 3) 

which yield 

c33B33 - c33B33 + 4, (~33 - ~3,) = 0 (12 3) 

& (~1 - cm) = B,,cm BI, (cu - d = B,,c,, (12 3) 

cd,, = 0, ca3B,, = 0 (123) 

(4.1) 

(4.2) 

From (4.2) we obtain 

B,, = B,, = 0 (12 3) (4.3) 
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Let us treat Eqs.(4.1) as homogeneous linear equations in B,,, B,,, B,, I keeping h c,,, 
c33 fixed. Not all the latter vanish, since Ao+O. Hence it follows that the determinant 
Ag of the system must vanish. This gives 

AB = (&, - B,,)@B - &)(&, - %f = 0 

whence, using (4.1), we obtain 

B,, = B22 = B,, = B 

Now consider identity (2.2). It splits into three: 

~11 Iz.+A,i~i - x%AaixiI = 0 (1 23) 

and hence 

(4.4) 

cm (A,, - AX,) = 0, a&,, ='A ~Ir-4,~ = 0, C,~A~~ = 0 (123) 

from which we obtain 

A,, = A,, = A,, = A, A,, = A,, = A,, = 0 (4.5) 

Identity (2.1) follows automatically from (4.41 and (4.5). 
In Case 2, therefore, the integral Y = ‘i,Ax+s + Bxsy is a linear combination of the first 

two integrals in (1.3). 

5. Case 3. Since y,' -I- yzz + Y,* is independent of the direction of the axes O%r,r,, 
we can orient the latter so that vg, = ‘/sCiiYi’. It may also be assumed that 

AC = (Cl, - C,Z + (&a - C,,)' i (C,,- cr? z 0 (5.1) 

since otherwise Case 3 reduces to Case 2. 
Next, we translate the origin to a point 0’ for which the coefficients of the bilinear 

form V,, satisfy the equalities B1, = Bji (i,j = %,2,3), though it may not be true that 
b,j = bj,. There in fact exists a unique such point, provided (/5/, p.280) that 

DC = (C,l + C,,)(C,, + C&C,, + '$A f 0 (5.2) 

Note that condition (5.2) is not essential, and it may be avoided as follows. Instead 
of V, we look for an integral U = V +-XT = U,, + U,, Jr U,, where h is an undefined constant. 
Orient the coordinate axes &qpx3 so that U,, = r/,(Cii+ Ic)yt', and then translate the origin 
to a point of the body 0’ such that the coefficients of the bilinear form u YX are 
symmetric. When this is done, the constant h may be so chosen that 

D (V = (C,, + 'A, + 2h)(Czz + C,, + PM(C,, + C,, + 2hc) + 0 

In this coordinate frame, the analysis of Case 3 is identical word for word with that of 
Case 1, provided one interchanges the roles of T and V or, what is the same replaces aif, b,j, 
Cif by Ait, Bfj, C;j, and vice versa. By our lemma, one then obtains Lyapunov's case instead 
of Steklov's, and Clebsch's third case instead of his second. 

Summarizing, we conclude that Steklov's Theorem /3/ is rigorously true, so that the 
results of /E-10/, which contradict it, must be in error. 

6. Case 4. We present the result of the analysis in this case in a coordinate frame 
relative to which we have ai1 = 0, bii = bj‘ (i,j = 1, 2, 3; ig j) in (1.1). 

If T = “/~(c+T~~ + Zbgxtyg), Eqs.(l.2) admit of a fourth integral 

V = b,x,” + b2xz2 + bp,% = const (6.1) 

This case is of some interest from the mathematical viewpoint, as an exampleofintegration 
of the Kirchhoff-Clebsch equations in elliptic functions of time using the apparatus of screw 
calculus /ll/. 

Indeed, in this case Eqs.cl.2) can be considered in the following form, where e is the 
Clifford mult .iplier: 

s; = (D, - D,)S,S, (12 3) (6.2) 
S, = x1 + ey,, D, = b, + ea, (123), 9 = 0 

Eqs.(6.2 ) admit of first integrals 

St2 + Ss2 + Sa2 = Ge$ D,S12 + DzSaZ + D3S3= = H (6.3) 

where G and fl are arbitrary dual constants. Separating the principal and instantaneous parts 
of 16.3) /11/, we obtain the four first integrals (1.3) and (6.1). 

Eqs.(6.2) and integrals (6.3) are identical in form with the equations and integrals in 
the problem of the motion of a body with one fixed point in the Euler case. There exists a 
general solution of this problem in elliptic functions of time (/3/, pp.56, 57). Replacing 
the real variables and constants in this solution by their dual analogues, we obtainthegeneral 
solution of Eqs.(6.2), whence, by separating the principal and instantaneous parts, we obtain 
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the general solution of Eqs.(l.i) in elliptic functions of time /7/. 

7. According to a well-known remark of Lyapunov /4/, his integrable case of Eqs.11.~~ 
may be regarded as a limiting case of Stcklov's case, and Clebsch's third case as a limiting 
case of Clebsch's second case. 

Let us examine this question. Let Ts, TL be the kinetic energy of the "body-plus-liquid" 
system in the StekLov and Lyapunov cases, and V,, V, the corresponding fourth integrals of 
Eqs.cl.2). 

Let 

T s = + C bwla -I- 2aeae3rc,yl + oael (es2 -I- e32) ~21 
am 

1 
v&-=-y is l.v12 - 2~elwl + I+ (e, - cd2 q21 

where e,, e,, e,, u are fixed constants. Then, by our lemma, we have TL = Y,, V, = Ts. 
Consider the one-parameter families of functions 

V(h) = -1LVs + (1 - h)Vr. 

5 (A) = le, i- 1 - A, b, (A) = (I Ihe,e, - (1 - ?+,I (12 3) 

a, (a) = o2 (he, fez2 i- es”) i (1 - a)(~ - es)%1 (12 3) 

(7.1) 

(7.2) 

dependent on a parameter h, O,<a,< 1. 
Eqs.cl.2) with ?'= T(h) admit of a fourth independent integral V= V(a). Therefore, 

expressions (7.1) determine a family of integrable cases of Eqs.(1.2), which includes Steklov's 
case li = 1 and Lyapunov's case Ir. = 0. 

We assert that if A=+=0 one has Steklov's case. 
Indeed, the first fosmula of (7.21, with A+0 implies 

e,=(c,+a--l)a-1 ga3) 

Substuting these constants into the other two formulae 
ships 

b, = b -I- ohh,c,, a, = a + aaa-%, (~~2 -i_ ~~2) 

6 = u (a - f)a-1 Ic, -+ cq -k c3 + 2 (a - i)i 

(7.3) 

of (7.21, we obtain the relation- 

(12 3) (7.4) 

u = 2~2 fa - 

fa - vi 
w-2 k,c, -k cac3 + C,C, i (a - I)(c~ + c, + es) i_ 

connecting the coefficients of the kinetic energy of the system, defining Steklov's case. 
Multiply both sides of (7.3) by h and let h-+ 0; then Cj(h)-t 1 as h + 0 (i =- 1, 2, 3). 

Letting a-+0 in (7.4) we obtain an indeterminate expression of the type cu.0 for bj (G 
aj (a) . TO resolve these indeterminacies, we let a+0 in the first of formulae (7.1). The 
result is 

fim 6, (A) = - ae,, lim a, (h) = 13 (ez - e# (I 231, a -+ 0 

These limits, coupled with the equalities c, = C% = CQ = 1, define Lyapunov's case. 
Thus, the families (7.1) constitute a continuous one-parameter family of integrable 

Steklov cases for which Lyapunov's case appears as a limit as h-0. 
Now consider Clebsch's second and third cases. Let T,, T, be the kinetic energy of the 

system in these cases and vs. v, the corresponding fourth integrals of Eqs.cl.2). Let 

where e,, eE, e3, z are fixed constants. BY the lemma, T, = V,, V, = T,. 
Consider the families of functions 

which depend on the 
Eqs.cl.2) with 

T (a) = aT, + (1 - h)T, = ?% fct (ah2 + ai (a)ri21 
v (a) = --hli, -i- (1 - a)V, 

(7.5) 

c, fa) = he, + 1 - a, a, (a) = T ihe,e, - (1 - afe,l (i 23) (7.6) 

parameter a, 0 <a,<i. 
T = T (a) admit of a fourth independent integral V = V(h). Consequently, 
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expressions (7.5) determine a one-parameter family of integrable cases of Eqs.(l.2), which 

includes Clebsch's second case (& = 1) and third case (h = 0). 

We assert that if h#O, one has Clebsch's second case. 

Indeed, if h#O, it follows from (7.6) that 

he, = Cl + h - 1 (12 3) (7.7) 
a, = a + TPC,C, (12 3), a = z (A - 1)X' [c, + c2 + CI + (7.8) 

2 (h - f)l 

Conditions (7.8), imposed on the coefficients of the kinetic energy of the system, define 

Clebsch's second case. Expressions (7.5) imply the limit relations (n + 0) lim c1 (h) = 1, lim 
a, (h) = --tar (123) which define Clebsch's third case. 

Thus, the families (7.5) constitute a family of Clebsch's second cases, yielding 

Clebsch's third case as a limit as b + 0. 

8. Kolosov /6/, investigating the motion of a body in a liquid in the case 

T = r/2 (a$*' + 2b*z& + C&2) 

with constants ai, bi, ci (i = 1, 2, 3) satisfying the conditions 

s(ca - Q) ce(cs--1) c3 (cl- cz) 
bs-_b?=v== 1 s bz - bl 4 

(bz -- b# (bs - bl)= (bl - bd2 a,--=ao--=~a,-_ 
Cl % c3 

B) 

pointed out the existence of a fourth independent integral of equations (1.2) in the form 

(8.1) 

and showed that Steklov's and Lyapunov's cases are special cases of conditions (A) and (B), 

in which the fourth integrals may be represented in terms of the integrals (1.3) in the form 

(8.1). 

It can be shown that the relationships (A) and (B) impose four conditions on the nine 

constants a,, bi, ci, so that the five of these constants occurring in (8.1) may be regarded 

as arbitrary parameters, whereas the number of such parameters in Steklov's and Lyapunov's 

fourth integrals is four. It might be supposed, therefore, that conditions (A) and (B), 

together with (8.1), define a more general integrable case, including both Steklov's and 

Lyapunov's as special cases. 

We shall show that conditions (A) and (B) are equivalent to Lyapunov's conditions (1.10) 

and do not produce any integrable cases other than those of Steklov and Lyapunov; formula 

(8.1) is simply another notation for the fourth integral in these two cases. 

In fact, condition (A) yields two relationships, obtained by equating the first two and 

last two terms in (A). Each of these yields the same relationship, whichis identical with 

the first of conditions (1.10). Therefore conditions (A) and (B) are equivalent to (1.10). 

Consider conditions (1.10). Fixing Cl7 c2,ca, let us treat the quantities 61, b,, b, 
in the first of conditions (1.10) as Cartesian coordinates of some point. There are two 

possibilities: AC=+0 and A,=O. 
In the first case the locus of all points satisfying the first condition in (1.10) is a 

plane, whose equation in parametric form may be written as /3/ 

b, = b + uc2c3 (I 2 3) (8.2) 

where b, u are undefined constants. Then, using (8.2), we bring conditions (B) to the form 

a, = a + u2c1 (c2 - c# (8.3) 

where a is arbitrary. Equalities (8.2) and (8.3) define Steklov's case. 

In the second case we have c1 = c2 = ca = c. The first of conditions (1.10) isautomatically 

satisfied,whilethe second yields the relationships defining Lyapunov's case. 

1. 

2. 

3. 
4. 

REFERENCES 

KIRCHHOFF G.R., Gber die Bewegung eines Rotationsk&pers in eines Flussigkeit. J. Reine 

Angew. Mat;., 71, 1870. 

CLEBSCH A., Uber die Bewegung eines Kkrpers in eines Flussigkeit. Math. Annalen, 3, 1870. 

STEKLOV V.A., On the motion of a rigid body in a liquid, Khar'kov, Tip. Darre, 1893. 

LYAPUNOV A.M., A new case of integrability of the differential equations of motion of a 

rigid body in a liquid. In: Collected Papers, 1, Moscow, Izd. Akad. Nauk SSSR, 1954. 



322 

5. LYAPUNOV A.M., On steady screw motions of a rigid body in a liquid. In: Collected Papers, 
1, Moscow, Izd. Akad. Nauk SSSR, 1954. 

6. KOLOSOV G.V., A note on the motion of a rigid body in an incompressible liquid in the cc~se:; 

of V.A. Steklov and A.M. Lyapunov. Izv. ROS. Akad. Nauk, 13, 1919. 

7. BUROV A.A. and RUBANOVSKII V.N., On a general solution of Kirchhoff-Clebsch-type equations. 
In: Froblems in the study of the stability and stabilization of motion, Moscow, Computing 

Centre, Akad. Nauk SSSR, 1987. 

8. LUNEV V.V., Single-valued solutions in the problem of the motion of a rigid body with a 

fixed point in a Lorentz field of force. Sbornik Nauchno-metodicheskikh statei po 

teoreticheskoi mekhanike, 11, Moscow, Vysshaya Shkola, 1981. 

9. LUNEV V.V., Integrable cases in the problem of the motion of a rigid body with a fixed 

point in a Lorentz field of force. Dokl. Akad. Nauk SSSR, 275, 4, 1984. 

10. LUNEV V.V., A hydrodynamic analogue of the problem of the motion of a rigid body with 

fixed point in a Lorentz field of force. Dokl. Akad. Nauk SSSR, 276, 2, 1984. 

11. IJIMENTBERG F.M., Screw calculus and its applications in mechanics, Moscow, Nauka, 1965. 

Translated by D.L. 

PMM U.S.S.R.,Vo1.52,No.3,pp.322-328,1988 

Printed in Great Britain 

THE INSTABILITY OF THE 
WHEN THE 

oo21-8928/88 $~O.GO+O.OO 

01989 Pergamon Press plc 

EQUILIBRIUM OF AN INHOMOGENEOUS FLUID IN CASES 
POTENTIAL ENERGY IS NOT MINIMAL* 

V.A. VLADIMIROV 

The possibility of extending the methods of proof of instability /l-3/ to 

the hydrodynamics of an ideal incompressible density-inhomogeneous 

(stratified) fluid is explored. As distinct from the general statement 

/3/, the rigid walls of the vessel containing the fluid are assumed to be 

fixed, so that the purely hydrodynamic part of the problem is isolated. 

Examples of a two-layer (with and without surface tension) and of a con- 

tinuously stratified fluid are studied. The main result is to find 

Lyapunov functionals W which in all cases are increasing, by virtue of the 

linearized equations of motion of the fluid. The structure of these func- 

tionals is such that their growth implies instability in the sense of an 

increase of the integrals of the disturbance-squared of the hydrodynamic 

fields (instability in the linear approximation in the mean square). The 

form of the functionals W is determined by the Hamiltonian statement of 

the theorem on the instability of finite-dimensional mechanical systems 

/2/ and by the usual ways of introducing the canonical variables into 
the hydrodynamic problem /4, 5/. In view of the well-known equivalence 
of stratification and rotation effects /6, 7/, all the present results 
hold for two classes of rotating flows of homogeneous fluid. Lyapunov's 

and Chetayev's theorems (the converse of Lagrange's theorems) are well- 

known in analytical mechanics; they consist in proving the instability 
of the equilibrium position of a mechanical system when its potential 
energy has a maximum or a saddle point /l, 2/. The extension of these 

theorems to systems that contain rigid bodies and fluid is described in 

/3/ (Theorem III, p.178). 

1. Basic equations. We consider the three-dimensional motions ofanideal incompressible 
fluid which entirely fills the domain z with boundary i%. 1n Cartesian coordinates %rXz,X3 
the equations of motion and the boundary conditions are 

(1.1) 

*Prikl.Matem.Mekhan.,52,3,415-422,1988 


